827 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			827 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 'use strict';
 | |
| 
 | |
| Object.defineProperty(exports, '__esModule', {
 | |
|   value: true
 | |
| });
 | |
| exports.default = void 0;
 | |
| 
 | |
| /**
 | |
|  * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 | |
|  *
 | |
|  * This source code is licensed under the MIT license found in the
 | |
|  * LICENSE file in the root directory of this source tree.
 | |
|  *
 | |
|  */
 | |
| // This diff-sequences package implements the linear space variation in
 | |
| // An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers
 | |
| // Relationship in notation between Myers paper and this package:
 | |
| // A is a
 | |
| // N is aLength, aEnd - aStart, and so on
 | |
| // x is aIndex, aFirst, aLast, and so on
 | |
| // B is b
 | |
| // M is bLength, bEnd - bStart, and so on
 | |
| // y is bIndex, bFirst, bLast, and so on
 | |
| // Δ = N - M is negative of baDeltaLength = bLength - aLength
 | |
| // D is d
 | |
| // k is kF
 | |
| // k + Δ is kF = kR - baDeltaLength
 | |
| // V is aIndexesF or aIndexesR (see comment below about Indexes type)
 | |
| // index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)
 | |
| // starting point in forward direction (0, 0) is (-1, -1)
 | |
| // starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)
 | |
| // The “edit graph” for sequences a and b corresponds to items:
 | |
| // in a on the horizontal axis
 | |
| // in b on the vertical axis
 | |
| //
 | |
| // Given a-coordinate of a point in a diagonal, you can compute b-coordinate.
 | |
| //
 | |
| // Forward diagonals kF:
 | |
| // zero diagonal intersects top left corner
 | |
| // positive diagonals intersect top edge
 | |
| // negative diagonals insersect left edge
 | |
| //
 | |
| // Reverse diagonals kR:
 | |
| // zero diagonal intersects bottom right corner
 | |
| // positive diagonals intersect right edge
 | |
| // negative diagonals intersect bottom edge
 | |
| // The graph contains a directed acyclic graph of edges:
 | |
| // horizontal: delete an item from a
 | |
| // vertical: insert an item from b
 | |
| // diagonal: common item in a and b
 | |
| //
 | |
| // The algorithm solves dual problems in the graph analogy:
 | |
| // Find longest common subsequence: path with maximum number of diagonal edges
 | |
| // Find shortest edit script: path with minimum number of non-diagonal edges
 | |
| // Input callback function compares items at indexes in the sequences.
 | |
| // Output callback function receives the number of adjacent items
 | |
| // and starting indexes of each common subsequence.
 | |
| // Either original functions or wrapped to swap indexes if graph is transposed.
 | |
| // Indexes in sequence a of last point of forward or reverse paths in graph.
 | |
| // Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.
 | |
| // This package indexes by iF and iR which are greater than or equal to zero.
 | |
| // and also updates the index arrays in place to cut memory in half.
 | |
| // kF = 2 * iF - d
 | |
| // kR = d - 2 * iR
 | |
| // Division of index intervals in sequences a and b at the middle change.
 | |
| // Invariant: intervals do not have common items at the start or end.
 | |
| const pkg = 'diff-sequences'; // for error messages
 | |
| 
 | |
| const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8
 | |
| // Return the number of common items that follow in forward direction.
 | |
| // The length of what Myers paper calls a “snake” in a forward path.
 | |
| 
 | |
| const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {
 | |
|   let nCommon = 0;
 | |
| 
 | |
|   while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {
 | |
|     aIndex += 1;
 | |
|     bIndex += 1;
 | |
|     nCommon += 1;
 | |
|   }
 | |
| 
 | |
|   return nCommon;
 | |
| }; // Return the number of common items that precede in reverse direction.
 | |
| // The length of what Myers paper calls a “snake” in a reverse path.
 | |
| 
 | |
| const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {
 | |
|   let nCommon = 0;
 | |
| 
 | |
|   while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {
 | |
|     aIndex -= 1;
 | |
|     bIndex -= 1;
 | |
|     nCommon += 1;
 | |
|   }
 | |
| 
 | |
|   return nCommon;
 | |
| }; // A simple function to extend forward paths from (d - 1) to d changes
 | |
| // when forward and reverse paths cannot yet overlap.
 | |
| 
 | |
| const extendPathsF = (d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF) => {
 | |
|   // Unroll the first iteration.
 | |
|   let iF = 0;
 | |
|   let kF = -d; // kF = 2 * iF - d
 | |
| 
 | |
|   let aFirst = aIndexesF[iF]; // in first iteration always insert
 | |
| 
 | |
|   let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration
 | |
| 
 | |
|   aIndexesF[iF] += countCommonItemsF(
 | |
|     aFirst + 1,
 | |
|     aEnd,
 | |
|     bF + aFirst - kF + 1,
 | |
|     bEnd,
 | |
|     isCommon
 | |
|   ); // Optimization: skip diagonals in which paths cannot ever overlap.
 | |
| 
 | |
|   const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even.
 | |
| 
 | |
|   for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {
 | |
|     // To get first point of path segment, move one change in forward direction
 | |
|     // from last point of previous path segment in an adjacent diagonal.
 | |
|     // In last possible iteration when iF === d and kF === d always delete.
 | |
|     if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {
 | |
|       aFirst = aIndexesF[iF]; // vertical to insert from b
 | |
|     } else {
 | |
|       aFirst = aIndexPrev1 + 1; // horizontal to delete from a
 | |
| 
 | |
|       if (aEnd <= aFirst) {
 | |
|         // Optimization: delete moved past right of graph.
 | |
|         return iF - 1;
 | |
|       }
 | |
|     } // To get last point of path segment, move along diagonal of common items.
 | |
| 
 | |
|     aIndexPrev1 = aIndexesF[iF];
 | |
|     aIndexesF[iF] =
 | |
|       aFirst +
 | |
|       countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);
 | |
|   }
 | |
| 
 | |
|   return iMaxF;
 | |
| }; // A simple function to extend reverse paths from (d - 1) to d changes
 | |
| // when reverse and forward paths cannot yet overlap.
 | |
| 
 | |
| const extendPathsR = (d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR) => {
 | |
|   // Unroll the first iteration.
 | |
|   let iR = 0;
 | |
|   let kR = d; // kR = d - 2 * iR
 | |
| 
 | |
|   let aFirst = aIndexesR[iR]; // in first iteration always insert
 | |
| 
 | |
|   let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration
 | |
| 
 | |
|   aIndexesR[iR] -= countCommonItemsR(
 | |
|     aStart,
 | |
|     aFirst - 1,
 | |
|     bStart,
 | |
|     bR + aFirst - kR - 1,
 | |
|     isCommon
 | |
|   ); // Optimization: skip diagonals in which paths cannot ever overlap.
 | |
| 
 | |
|   const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even.
 | |
| 
 | |
|   for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {
 | |
|     // To get first point of path segment, move one change in reverse direction
 | |
|     // from last point of previous path segment in an adjacent diagonal.
 | |
|     // In last possible iteration when iR === d and kR === -d always delete.
 | |
|     if (iR !== d && aIndexesR[iR] < aIndexPrev1) {
 | |
|       aFirst = aIndexesR[iR]; // vertical to insert from b
 | |
|     } else {
 | |
|       aFirst = aIndexPrev1 - 1; // horizontal to delete from a
 | |
| 
 | |
|       if (aFirst < aStart) {
 | |
|         // Optimization: delete moved past left of graph.
 | |
|         return iR - 1;
 | |
|       }
 | |
|     } // To get last point of path segment, move along diagonal of common items.
 | |
| 
 | |
|     aIndexPrev1 = aIndexesR[iR];
 | |
|     aIndexesR[iR] =
 | |
|       aFirst -
 | |
|       countCommonItemsR(
 | |
|         aStart,
 | |
|         aFirst - 1,
 | |
|         bStart,
 | |
|         bR + aFirst - kR - 1,
 | |
|         isCommon
 | |
|       );
 | |
|   }
 | |
| 
 | |
|   return iMaxR;
 | |
| }; // A complete function to extend forward paths from (d - 1) to d changes.
 | |
| // Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.
 | |
| 
 | |
| const extendOverlappablePathsF = (
 | |
|   d,
 | |
|   aStart,
 | |
|   aEnd,
 | |
|   bStart,
 | |
|   bEnd,
 | |
|   isCommon,
 | |
|   aIndexesF,
 | |
|   iMaxF,
 | |
|   aIndexesR,
 | |
|   iMaxR,
 | |
|   division
 | |
| ) => {
 | |
|   const bF = bStart - aStart; // bIndex = bF + aIndex - kF
 | |
| 
 | |
|   const aLength = aEnd - aStart;
 | |
|   const bLength = bEnd - bStart;
 | |
|   const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength
 | |
|   // Range of diagonals in which forward and reverse paths might overlap.
 | |
| 
 | |
|   const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR
 | |
| 
 | |
|   const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)
 | |
| 
 | |
|   let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration
 | |
|   // Optimization: skip diagonals in which paths cannot ever overlap.
 | |
| 
 | |
|   const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.
 | |
| 
 | |
|   for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {
 | |
|     // To get first point of path segment, move one change in forward direction
 | |
|     // from last point of previous path segment in an adjacent diagonal.
 | |
|     // In first iteration when iF === 0 and kF === -d always insert.
 | |
|     // In last possible iteration when iF === d and kF === d always delete.
 | |
|     const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);
 | |
|     const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;
 | |
|     const aFirst = insert
 | |
|       ? aLastPrev // vertical to insert from b
 | |
|       : aLastPrev + 1; // horizontal to delete from a
 | |
|     // To get last point of path segment, move along diagonal of common items.
 | |
| 
 | |
|     const bFirst = bF + aFirst - kF;
 | |
|     const nCommonF = countCommonItemsF(
 | |
|       aFirst + 1,
 | |
|       aEnd,
 | |
|       bFirst + 1,
 | |
|       bEnd,
 | |
|       isCommon
 | |
|     );
 | |
|     const aLast = aFirst + nCommonF;
 | |
|     aIndexPrev1 = aIndexesF[iF];
 | |
|     aIndexesF[iF] = aLast;
 | |
| 
 | |
|     if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {
 | |
|       // Solve for iR of reverse path with (d - 1) changes in diagonal kF:
 | |
|       // kR = kF + baDeltaLength
 | |
|       // kR = (d - 1) - 2 * iR
 | |
|       const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal,
 | |
|       // then this is the middle change of the index intervals.
 | |
| 
 | |
|       if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {
 | |
|         // Unlike the Myers algorithm which finds only the middle “snake”
 | |
|         // this package can find two common subsequences per division.
 | |
|         // Last point of previous path segment is on an adjacent diagonal.
 | |
|         const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change
 | |
|         // cannot have common items at the end,
 | |
|         // move in reverse direction along a diagonal of common items.
 | |
| 
 | |
|         const nCommonR = countCommonItemsR(
 | |
|           aStart,
 | |
|           aLastPrev,
 | |
|           bStart,
 | |
|           bLastPrev,
 | |
|           isCommon
 | |
|         );
 | |
|         const aIndexPrevFirst = aLastPrev - nCommonR;
 | |
|         const bIndexPrevFirst = bLastPrev - nCommonR;
 | |
|         const aEndPreceding = aIndexPrevFirst + 1;
 | |
|         const bEndPreceding = bIndexPrevFirst + 1;
 | |
|         division.nChangePreceding = d - 1;
 | |
| 
 | |
|         if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {
 | |
|           // Optimization: number of preceding changes in forward direction
 | |
|           // is equal to number of items in preceding interval,
 | |
|           // therefore it cannot contain any common items.
 | |
|           division.aEndPreceding = aStart;
 | |
|           division.bEndPreceding = bStart;
 | |
|         } else {
 | |
|           division.aEndPreceding = aEndPreceding;
 | |
|           division.bEndPreceding = bEndPreceding;
 | |
|         }
 | |
| 
 | |
|         division.nCommonPreceding = nCommonR;
 | |
| 
 | |
|         if (nCommonR !== 0) {
 | |
|           division.aCommonPreceding = aEndPreceding;
 | |
|           division.bCommonPreceding = bEndPreceding;
 | |
|         }
 | |
| 
 | |
|         division.nCommonFollowing = nCommonF;
 | |
| 
 | |
|         if (nCommonF !== 0) {
 | |
|           division.aCommonFollowing = aFirst + 1;
 | |
|           division.bCommonFollowing = bFirst + 1;
 | |
|         }
 | |
| 
 | |
|         const aStartFollowing = aLast + 1;
 | |
|         const bStartFollowing = bFirst + nCommonF + 1;
 | |
|         division.nChangeFollowing = d - 1;
 | |
| 
 | |
|         if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
 | |
|           // Optimization: number of changes in reverse direction
 | |
|           // is equal to number of items in following interval,
 | |
|           // therefore it cannot contain any common items.
 | |
|           division.aStartFollowing = aEnd;
 | |
|           division.bStartFollowing = bEnd;
 | |
|         } else {
 | |
|           division.aStartFollowing = aStartFollowing;
 | |
|           division.bStartFollowing = bStartFollowing;
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }; // A complete function to extend reverse paths from (d - 1) to d changes.
 | |
| // Return true if a path overlaps forward path of d changes in its diagonal.
 | |
| 
 | |
| const extendOverlappablePathsR = (
 | |
|   d,
 | |
|   aStart,
 | |
|   aEnd,
 | |
|   bStart,
 | |
|   bEnd,
 | |
|   isCommon,
 | |
|   aIndexesF,
 | |
|   iMaxF,
 | |
|   aIndexesR,
 | |
|   iMaxR,
 | |
|   division
 | |
| ) => {
 | |
|   const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
 | |
| 
 | |
|   const aLength = aEnd - aStart;
 | |
|   const bLength = bEnd - bStart;
 | |
|   const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength
 | |
|   // Range of diagonals in which forward and reverse paths might overlap.
 | |
| 
 | |
|   const kMinOverlapR = baDeltaLength - d; // -d <= kF
 | |
| 
 | |
|   const kMaxOverlapR = baDeltaLength + d; // kF <= d
 | |
| 
 | |
|   let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration
 | |
|   // Optimization: skip diagonals in which paths cannot ever overlap.
 | |
| 
 | |
|   const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.
 | |
| 
 | |
|   for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {
 | |
|     // To get first point of path segment, move one change in reverse direction
 | |
|     // from last point of previous path segment in an adjacent diagonal.
 | |
|     // In first iteration when iR === 0 and kR === d always insert.
 | |
|     // In last possible iteration when iR === d and kR === -d always delete.
 | |
|     const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);
 | |
|     const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;
 | |
|     const aFirst = insert
 | |
|       ? aLastPrev // vertical to insert from b
 | |
|       : aLastPrev - 1; // horizontal to delete from a
 | |
|     // To get last point of path segment, move along diagonal of common items.
 | |
| 
 | |
|     const bFirst = bR + aFirst - kR;
 | |
|     const nCommonR = countCommonItemsR(
 | |
|       aStart,
 | |
|       aFirst - 1,
 | |
|       bStart,
 | |
|       bFirst - 1,
 | |
|       isCommon
 | |
|     );
 | |
|     const aLast = aFirst - nCommonR;
 | |
|     aIndexPrev1 = aIndexesR[iR];
 | |
|     aIndexesR[iR] = aLast;
 | |
| 
 | |
|     if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {
 | |
|       // Solve for iF of forward path with d changes in diagonal kR:
 | |
|       // kF = kR - baDeltaLength
 | |
|       // kF = 2 * iF - d
 | |
|       const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal,
 | |
|       // then this is a middle change of the index intervals.
 | |
| 
 | |
|       if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {
 | |
|         const bLast = bFirst - nCommonR;
 | |
|         division.nChangePreceding = d;
 | |
| 
 | |
|         if (d === aLast + bLast - aStart - bStart) {
 | |
|           // Optimization: number of changes in reverse direction
 | |
|           // is equal to number of items in preceding interval,
 | |
|           // therefore it cannot contain any common items.
 | |
|           division.aEndPreceding = aStart;
 | |
|           division.bEndPreceding = bStart;
 | |
|         } else {
 | |
|           division.aEndPreceding = aLast;
 | |
|           division.bEndPreceding = bLast;
 | |
|         }
 | |
| 
 | |
|         division.nCommonPreceding = nCommonR;
 | |
| 
 | |
|         if (nCommonR !== 0) {
 | |
|           // The last point of reverse path segment is start of common subsequence.
 | |
|           division.aCommonPreceding = aLast;
 | |
|           division.bCommonPreceding = bLast;
 | |
|         }
 | |
| 
 | |
|         division.nChangeFollowing = d - 1;
 | |
| 
 | |
|         if (d === 1) {
 | |
|           // There is no previous path segment.
 | |
|           division.nCommonFollowing = 0;
 | |
|           division.aStartFollowing = aEnd;
 | |
|           division.bStartFollowing = bEnd;
 | |
|         } else {
 | |
|           // Unlike the Myers algorithm which finds only the middle “snake”
 | |
|           // this package can find two common subsequences per division.
 | |
|           // Last point of previous path segment is on an adjacent diagonal.
 | |
|           const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change
 | |
|           // cannot have common items at the start,
 | |
|           // move in forward direction along a diagonal of common items.
 | |
| 
 | |
|           const nCommonF = countCommonItemsF(
 | |
|             aLastPrev,
 | |
|             aEnd,
 | |
|             bLastPrev,
 | |
|             bEnd,
 | |
|             isCommon
 | |
|           );
 | |
|           division.nCommonFollowing = nCommonF;
 | |
| 
 | |
|           if (nCommonF !== 0) {
 | |
|             // The last point of reverse path segment is start of common subsequence.
 | |
|             division.aCommonFollowing = aLastPrev;
 | |
|             division.bCommonFollowing = bLastPrev;
 | |
|           }
 | |
| 
 | |
|           const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev
 | |
| 
 | |
|           const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev
 | |
| 
 | |
|           if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
 | |
|             // Optimization: number of changes in forward direction
 | |
|             // is equal to number of items in following interval,
 | |
|             // therefore it cannot contain any common items.
 | |
|             division.aStartFollowing = aEnd;
 | |
|             division.bStartFollowing = bEnd;
 | |
|           } else {
 | |
|             division.aStartFollowing = aStartFollowing;
 | |
|             division.bStartFollowing = bStartFollowing;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }; // Given index intervals and input function to compare items at indexes,
 | |
| // divide at the middle change.
 | |
| //
 | |
| // DO NOT CALL if start === end, because interval cannot contain common items
 | |
| // and because this function will throw the “no overlap” error.
 | |
| 
 | |
| const divide = (
 | |
|   nChange,
 | |
|   aStart,
 | |
|   aEnd,
 | |
|   bStart,
 | |
|   bEnd,
 | |
|   isCommon,
 | |
|   aIndexesF,
 | |
|   aIndexesR,
 | |
|   division // output
 | |
| ) => {
 | |
|   const bF = bStart - aStart; // bIndex = bF + aIndex - kF
 | |
| 
 | |
|   const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
 | |
| 
 | |
|   const aLength = aEnd - aStart;
 | |
|   const bLength = bEnd - bStart; // Because graph has square or portrait orientation,
 | |
|   // length difference is minimum number of items to insert from b.
 | |
|   // Corresponding forward and reverse diagonals in graph
 | |
|   // depend on length difference of the sequences:
 | |
|   // kF = kR - baDeltaLength
 | |
|   // kR = kF + baDeltaLength
 | |
| 
 | |
|   const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side.
 | |
| 
 | |
|   let iMaxF = aLength;
 | |
|   let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction:
 | |
| 
 | |
|   aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start
 | |
| 
 | |
|   aIndexesR[0] = aEnd; // at open end of interval
 | |
| 
 | |
|   if (baDeltaLength % 2 === 0) {
 | |
|     // The number of changes in paths is 2 * d if length difference is even.
 | |
|     const dMin = (nChange || baDeltaLength) / 2;
 | |
|     const dMax = (aLength + bLength) / 2;
 | |
| 
 | |
|     for (let d = 1; d <= dMax; d += 1) {
 | |
|       iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 | |
| 
 | |
|       if (d < dMin) {
 | |
|         iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);
 | |
|       } else if (
 | |
|         // If a reverse path overlaps a forward path in the same diagonal,
 | |
|         // return a division of the index intervals at the middle change.
 | |
|         extendOverlappablePathsR(
 | |
|           d,
 | |
|           aStart,
 | |
|           aEnd,
 | |
|           bStart,
 | |
|           bEnd,
 | |
|           isCommon,
 | |
|           aIndexesF,
 | |
|           iMaxF,
 | |
|           aIndexesR,
 | |
|           iMaxR,
 | |
|           division
 | |
|         )
 | |
|       ) {
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // The number of changes in paths is 2 * d - 1 if length difference is odd.
 | |
|     const dMin = ((nChange || baDeltaLength) + 1) / 2;
 | |
|     const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths.
 | |
|     // Because of invariant that intervals have no common items at start or end,
 | |
|     // and limitation not to call divide with empty intervals,
 | |
|     // therefore it cannot be called if a forward path with one change
 | |
|     // would overlap a reverse path with no changes, even if dMin === 1.
 | |
| 
 | |
|     let d = 1;
 | |
|     iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 | |
| 
 | |
|     for (d += 1; d <= dMax; d += 1) {
 | |
|       iMaxR = extendPathsR(
 | |
|         d - 1,
 | |
|         aStart,
 | |
|         bStart,
 | |
|         bR,
 | |
|         isCommon,
 | |
|         aIndexesR,
 | |
|         iMaxR
 | |
|       );
 | |
| 
 | |
|       if (d < dMin) {
 | |
|         iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 | |
|       } else if (
 | |
|         // If a forward path overlaps a reverse path in the same diagonal,
 | |
|         // return a division of the index intervals at the middle change.
 | |
|         extendOverlappablePathsF(
 | |
|           d,
 | |
|           aStart,
 | |
|           aEnd,
 | |
|           bStart,
 | |
|           bEnd,
 | |
|           isCommon,
 | |
|           aIndexesF,
 | |
|           iMaxF,
 | |
|           aIndexesR,
 | |
|           iMaxR,
 | |
|           division
 | |
|         )
 | |
|       ) {
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /* istanbul ignore next */
 | |
| 
 | |
|   throw new Error(
 | |
|     `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`
 | |
|   );
 | |
| }; // Given index intervals and input function to compare items at indexes,
 | |
| // return by output function the number of adjacent items and starting indexes
 | |
| // of each common subsequence. Divide and conquer with only linear space.
 | |
| //
 | |
| // The index intervals are half open [start, end) like array slice method.
 | |
| // DO NOT CALL if start === end, because interval cannot contain common items
 | |
| // and because divide function will throw the “no overlap” error.
 | |
| 
 | |
| const findSubsequences = (
 | |
|   nChange,
 | |
|   aStart,
 | |
|   aEnd,
 | |
|   bStart,
 | |
|   bEnd,
 | |
|   transposed,
 | |
|   callbacks,
 | |
|   aIndexesF,
 | |
|   aIndexesR,
 | |
|   division // temporary memory, not input nor output
 | |
| ) => {
 | |
|   if (bEnd - bStart < aEnd - aStart) {
 | |
|     // Transpose graph so it has portrait instead of landscape orientation.
 | |
|     // Always compare shorter to longer sequence for consistency and optimization.
 | |
|     transposed = !transposed;
 | |
| 
 | |
|     if (transposed && callbacks.length === 1) {
 | |
|       // Lazily wrap callback functions to swap args if graph is transposed.
 | |
|       const _callbacks$ = callbacks[0],
 | |
|         foundSubsequence = _callbacks$.foundSubsequence,
 | |
|         isCommon = _callbacks$.isCommon;
 | |
|       callbacks[1] = {
 | |
|         foundSubsequence: (function(_foundSubsequence) {
 | |
|           function foundSubsequence(_x, _x2, _x3) {
 | |
|             return _foundSubsequence.apply(this, arguments);
 | |
|           }
 | |
| 
 | |
|           foundSubsequence.toString = function() {
 | |
|             return _foundSubsequence.toString();
 | |
|           };
 | |
| 
 | |
|           return foundSubsequence;
 | |
|         })((nCommon, bCommon, aCommon) => {
 | |
|           foundSubsequence(nCommon, aCommon, bCommon);
 | |
|         }),
 | |
|         isCommon: (function(_isCommon) {
 | |
|           function isCommon(_x4, _x5) {
 | |
|             return _isCommon.apply(this, arguments);
 | |
|           }
 | |
| 
 | |
|           isCommon.toString = function() {
 | |
|             return _isCommon.toString();
 | |
|           };
 | |
| 
 | |
|           return isCommon;
 | |
|         })((bIndex, aIndex) => isCommon(aIndex, bIndex))
 | |
|       };
 | |
|     }
 | |
| 
 | |
|     const tStart = aStart;
 | |
|     const tEnd = aEnd;
 | |
|     aStart = bStart;
 | |
|     aEnd = bEnd;
 | |
|     bStart = tStart;
 | |
|     bEnd = tEnd;
 | |
|   }
 | |
| 
 | |
|   const _callbacks = callbacks[transposed ? 1 : 0],
 | |
|     foundSubsequence = _callbacks.foundSubsequence,
 | |
|     isCommon = _callbacks.isCommon; // Divide the index intervals at the middle change.
 | |
| 
 | |
|   divide(
 | |
|     nChange,
 | |
|     aStart,
 | |
|     aEnd,
 | |
|     bStart,
 | |
|     bEnd,
 | |
|     isCommon,
 | |
|     aIndexesF,
 | |
|     aIndexesR,
 | |
|     division
 | |
|   );
 | |
|   const nChangePreceding = division.nChangePreceding,
 | |
|     aEndPreceding = division.aEndPreceding,
 | |
|     bEndPreceding = division.bEndPreceding,
 | |
|     nCommonPreceding = division.nCommonPreceding,
 | |
|     aCommonPreceding = division.aCommonPreceding,
 | |
|     bCommonPreceding = division.bCommonPreceding,
 | |
|     nCommonFollowing = division.nCommonFollowing,
 | |
|     aCommonFollowing = division.aCommonFollowing,
 | |
|     bCommonFollowing = division.bCommonFollowing,
 | |
|     nChangeFollowing = division.nChangeFollowing,
 | |
|     aStartFollowing = division.aStartFollowing,
 | |
|     bStartFollowing = division.bStartFollowing; // Unless either index interval is empty, they might contain common items.
 | |
| 
 | |
|   if (aStart < aEndPreceding && bStart < bEndPreceding) {
 | |
|     // Recursely find and return common subsequences preceding the division.
 | |
|     findSubsequences(
 | |
|       nChangePreceding,
 | |
|       aStart,
 | |
|       aEndPreceding,
 | |
|       bStart,
 | |
|       bEndPreceding,
 | |
|       transposed,
 | |
|       callbacks,
 | |
|       aIndexesF,
 | |
|       aIndexesR,
 | |
|       division
 | |
|     );
 | |
|   } // Return common subsequences that are adjacent to the middle change.
 | |
| 
 | |
|   if (nCommonPreceding !== 0) {
 | |
|     foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);
 | |
|   }
 | |
| 
 | |
|   if (nCommonFollowing !== 0) {
 | |
|     foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);
 | |
|   } // Unless either index interval is empty, they might contain common items.
 | |
| 
 | |
|   if (aStartFollowing < aEnd && bStartFollowing < bEnd) {
 | |
|     // Recursely find and return common subsequences following the division.
 | |
|     findSubsequences(
 | |
|       nChangeFollowing,
 | |
|       aStartFollowing,
 | |
|       aEnd,
 | |
|       bStartFollowing,
 | |
|       bEnd,
 | |
|       transposed,
 | |
|       callbacks,
 | |
|       aIndexesF,
 | |
|       aIndexesR,
 | |
|       division
 | |
|     );
 | |
|   }
 | |
| };
 | |
| 
 | |
| const validateLength = (name, arg) => {
 | |
|   const type = typeof arg;
 | |
| 
 | |
|   if (type !== 'number') {
 | |
|     throw new TypeError(`${pkg}: ${name} typeof ${type} is not a number`);
 | |
|   }
 | |
| 
 | |
|   if (!Number.isSafeInteger(arg)) {
 | |
|     throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);
 | |
|   }
 | |
| 
 | |
|   if (arg < 0) {
 | |
|     throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);
 | |
|   }
 | |
| };
 | |
| 
 | |
| const validateCallback = (name, arg) => {
 | |
|   const type = typeof arg;
 | |
| 
 | |
|   if (type !== 'function') {
 | |
|     throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);
 | |
|   }
 | |
| }; // Compare items in two sequences to find a longest common subsequence.
 | |
| // Given lengths of sequences and input function to compare items at indexes,
 | |
| // return by output function the number of adjacent items and starting indexes
 | |
| // of each common subsequence.
 | |
| 
 | |
| var _default = (aLength, bLength, isCommon, foundSubsequence) => {
 | |
|   validateLength('aLength', aLength);
 | |
|   validateLength('bLength', bLength);
 | |
|   validateCallback('isCommon', isCommon);
 | |
|   validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction.
 | |
| 
 | |
|   const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);
 | |
| 
 | |
|   if (nCommonF !== 0) {
 | |
|     foundSubsequence(nCommonF, 0, 0);
 | |
|   } // Unless both sequences consist of common items only,
 | |
|   // find common items in the half-trimmed index intervals.
 | |
| 
 | |
|   if (aLength !== nCommonF || bLength !== nCommonF) {
 | |
|     // Invariant: intervals do not have common items at the start.
 | |
|     // The start of an index interval is closed like array slice method.
 | |
|     const aStart = nCommonF;
 | |
|     const bStart = nCommonF; // Count common items from the end in the reverse direction.
 | |
| 
 | |
|     const nCommonR = countCommonItemsR(
 | |
|       aStart,
 | |
|       aLength - 1,
 | |
|       bStart,
 | |
|       bLength - 1,
 | |
|       isCommon
 | |
|     ); // Invariant: intervals do not have common items at the end.
 | |
|     // The end of an index interval is open like array slice method.
 | |
| 
 | |
|     const aEnd = aLength - nCommonR;
 | |
|     const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only,
 | |
|     // therefore the other trimmed index interval consists of changes only,
 | |
|     // find common items in the trimmed index intervals.
 | |
| 
 | |
|     const nCommonFR = nCommonF + nCommonR;
 | |
| 
 | |
|     if (aLength !== nCommonFR && bLength !== nCommonFR) {
 | |
|       const nChange = 0; // number of change items is not yet known
 | |
| 
 | |
|       const transposed = false; // call the original unwrapped functions
 | |
| 
 | |
|       const callbacks = [
 | |
|         {
 | |
|           foundSubsequence,
 | |
|           isCommon
 | |
|         }
 | |
|       ]; // Indexes in sequence a of last points in furthest reaching paths
 | |
|       // from outside the start at top left in the forward direction:
 | |
| 
 | |
|       const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction:
 | |
| 
 | |
|       const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function.
 | |
| 
 | |
|       const division = {
 | |
|         aCommonFollowing: NOT_YET_SET,
 | |
|         aCommonPreceding: NOT_YET_SET,
 | |
|         aEndPreceding: NOT_YET_SET,
 | |
|         aStartFollowing: NOT_YET_SET,
 | |
|         bCommonFollowing: NOT_YET_SET,
 | |
|         bCommonPreceding: NOT_YET_SET,
 | |
|         bEndPreceding: NOT_YET_SET,
 | |
|         bStartFollowing: NOT_YET_SET,
 | |
|         nChangeFollowing: NOT_YET_SET,
 | |
|         nChangePreceding: NOT_YET_SET,
 | |
|         nCommonFollowing: NOT_YET_SET,
 | |
|         nCommonPreceding: NOT_YET_SET
 | |
|       }; // Find and return common subsequences in the trimmed index intervals.
 | |
| 
 | |
|       findSubsequences(
 | |
|         nChange,
 | |
|         aStart,
 | |
|         aEnd,
 | |
|         bStart,
 | |
|         bEnd,
 | |
|         transposed,
 | |
|         callbacks,
 | |
|         aIndexesF,
 | |
|         aIndexesR,
 | |
|         division
 | |
|       );
 | |
|     }
 | |
| 
 | |
|     if (nCommonR !== 0) {
 | |
|       foundSubsequence(nCommonR, aEnd, bEnd);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| exports.default = _default;
 |