562 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			562 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | // Basic Javascript Elliptic Curve implementation
 | ||
|  | // Ported loosely from BouncyCastle's Java EC code
 | ||
|  | // Only Fp curves implemented for now
 | ||
|  | 
 | ||
|  | // Requires jsbn.js and jsbn2.js
 | ||
|  | var BigInteger = require('jsbn').BigInteger | ||
|  | var Barrett = BigInteger.prototype.Barrett | ||
|  | 
 | ||
|  | // ----------------
 | ||
|  | // ECFieldElementFp
 | ||
|  | 
 | ||
|  | // constructor
 | ||
|  | function ECFieldElementFp(q,x) { | ||
|  |     this.x = x; | ||
|  |     // TODO if(x.compareTo(q) >= 0) error
 | ||
|  |     this.q = q; | ||
|  | } | ||
|  | 
 | ||
|  | function feFpEquals(other) { | ||
|  |     if(other == this) return true; | ||
|  |     return (this.q.equals(other.q) && this.x.equals(other.x)); | ||
|  | } | ||
|  | 
 | ||
|  | function feFpToBigInteger() { | ||
|  |     return this.x; | ||
|  | } | ||
|  | 
 | ||
|  | function feFpNegate() { | ||
|  |     return new ECFieldElementFp(this.q, this.x.negate().mod(this.q)); | ||
|  | } | ||
|  | 
 | ||
|  | function feFpAdd(b) { | ||
|  |     return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q)); | ||
|  | } | ||
|  | 
 | ||
|  | function feFpSubtract(b) { | ||
|  |     return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q)); | ||
|  | } | ||
|  | 
 | ||
|  | function feFpMultiply(b) { | ||
|  |     return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q)); | ||
|  | } | ||
|  | 
 | ||
|  | function feFpSquare() { | ||
|  |     return new ECFieldElementFp(this.q, this.x.square().mod(this.q)); | ||
|  | } | ||
|  | 
 | ||
|  | function feFpDivide(b) { | ||
|  |     return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)); | ||
|  | } | ||
|  | 
 | ||
|  | ECFieldElementFp.prototype.equals = feFpEquals; | ||
|  | ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger; | ||
|  | ECFieldElementFp.prototype.negate = feFpNegate; | ||
|  | ECFieldElementFp.prototype.add = feFpAdd; | ||
|  | ECFieldElementFp.prototype.subtract = feFpSubtract; | ||
|  | ECFieldElementFp.prototype.multiply = feFpMultiply; | ||
|  | ECFieldElementFp.prototype.square = feFpSquare; | ||
|  | ECFieldElementFp.prototype.divide = feFpDivide; | ||
|  | 
 | ||
|  | // ----------------
 | ||
|  | // ECPointFp
 | ||
|  | 
 | ||
|  | // constructor
 | ||
|  | function ECPointFp(curve,x,y,z) { | ||
|  |     this.curve = curve; | ||
|  |     this.x = x; | ||
|  |     this.y = y; | ||
|  |     // Projective coordinates: either zinv == null or z * zinv == 1
 | ||
|  |     // z and zinv are just BigIntegers, not fieldElements
 | ||
|  |     if(z == null) { | ||
|  |       this.z = BigInteger.ONE; | ||
|  |     } | ||
|  |     else { | ||
|  |       this.z = z; | ||
|  |     } | ||
|  |     this.zinv = null; | ||
|  |     //TODO: compression flag
 | ||
|  | } | ||
|  | 
 | ||
|  | function pointFpGetX() { | ||
|  |     if(this.zinv == null) { | ||
|  |       this.zinv = this.z.modInverse(this.curve.q); | ||
|  |     } | ||
|  |     var r = this.x.toBigInteger().multiply(this.zinv); | ||
|  |     this.curve.reduce(r); | ||
|  |     return this.curve.fromBigInteger(r); | ||
|  | } | ||
|  | 
 | ||
|  | function pointFpGetY() { | ||
|  |     if(this.zinv == null) { | ||
|  |       this.zinv = this.z.modInverse(this.curve.q); | ||
|  |     } | ||
|  |     var r = this.y.toBigInteger().multiply(this.zinv); | ||
|  |     this.curve.reduce(r); | ||
|  |     return this.curve.fromBigInteger(r); | ||
|  | } | ||
|  | 
 | ||
|  | function pointFpEquals(other) { | ||
|  |     if(other == this) return true; | ||
|  |     if(this.isInfinity()) return other.isInfinity(); | ||
|  |     if(other.isInfinity()) return this.isInfinity(); | ||
|  |     var u, v; | ||
|  |     // u = Y2 * Z1 - Y1 * Z2
 | ||
|  |     u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q); | ||
|  |     if(!u.equals(BigInteger.ZERO)) return false; | ||
|  |     // v = X2 * Z1 - X1 * Z2
 | ||
|  |     v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q); | ||
|  |     return v.equals(BigInteger.ZERO); | ||
|  | } | ||
|  | 
 | ||
|  | function pointFpIsInfinity() { | ||
|  |     if((this.x == null) && (this.y == null)) return true; | ||
|  |     return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO); | ||
|  | } | ||
|  | 
 | ||
|  | function pointFpNegate() { | ||
|  |     return new ECPointFp(this.curve, this.x, this.y.negate(), this.z); | ||
|  | } | ||
|  | 
 | ||
|  | function pointFpAdd(b) { | ||
|  |     if(this.isInfinity()) return b; | ||
|  |     if(b.isInfinity()) return this; | ||
|  | 
 | ||
|  |     // u = Y2 * Z1 - Y1 * Z2
 | ||
|  |     var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q); | ||
|  |     // v = X2 * Z1 - X1 * Z2
 | ||
|  |     var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q); | ||
|  | 
 | ||
|  |     if(BigInteger.ZERO.equals(v)) { | ||
|  |         if(BigInteger.ZERO.equals(u)) { | ||
|  |             return this.twice(); // this == b, so double
 | ||
|  |         } | ||
|  | 	return this.curve.getInfinity(); // this = -b, so infinity
 | ||
|  |     } | ||
|  | 
 | ||
|  |     var THREE = new BigInteger("3"); | ||
|  |     var x1 = this.x.toBigInteger(); | ||
|  |     var y1 = this.y.toBigInteger(); | ||
|  |     var x2 = b.x.toBigInteger(); | ||
|  |     var y2 = b.y.toBigInteger(); | ||
|  | 
 | ||
|  |     var v2 = v.square(); | ||
|  |     var v3 = v2.multiply(v); | ||
|  |     var x1v2 = x1.multiply(v2); | ||
|  |     var zu2 = u.square().multiply(this.z); | ||
|  | 
 | ||
|  |     // x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
 | ||
|  |     var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q); | ||
|  |     // y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
 | ||
|  |     var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q); | ||
|  |     // z3 = v^3 * z1 * z2
 | ||
|  |     var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q); | ||
|  | 
 | ||
|  |     return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); | ||
|  | } | ||
|  | 
 | ||
|  | function pointFpTwice() { | ||
|  |     if(this.isInfinity()) return this; | ||
|  |     if(this.y.toBigInteger().signum() == 0) return this.curve.getInfinity(); | ||
|  | 
 | ||
|  |     // TODO: optimized handling of constants
 | ||
|  |     var THREE = new BigInteger("3"); | ||
|  |     var x1 = this.x.toBigInteger(); | ||
|  |     var y1 = this.y.toBigInteger(); | ||
|  | 
 | ||
|  |     var y1z1 = y1.multiply(this.z); | ||
|  |     var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q); | ||
|  |     var a = this.curve.a.toBigInteger(); | ||
|  | 
 | ||
|  |     // w = 3 * x1^2 + a * z1^2
 | ||
|  |     var w = x1.square().multiply(THREE); | ||
|  |     if(!BigInteger.ZERO.equals(a)) { | ||
|  |       w = w.add(this.z.square().multiply(a)); | ||
|  |     } | ||
|  |     w = w.mod(this.curve.q); | ||
|  |     //this.curve.reduce(w);
 | ||
|  |     // x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
 | ||
|  |     var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q); | ||
|  |     // y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
 | ||
|  |     var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q); | ||
|  |     // z3 = 8 * (y1 * z1)^3
 | ||
|  |     var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q); | ||
|  | 
 | ||
|  |     return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); | ||
|  | } | ||
|  | 
 | ||
|  | // Simple NAF (Non-Adjacent Form) multiplication algorithm
 | ||
|  | // TODO: modularize the multiplication algorithm
 | ||
|  | function pointFpMultiply(k) { | ||
|  |     if(this.isInfinity()) return this; | ||
|  |     if(k.signum() == 0) return this.curve.getInfinity(); | ||
|  | 
 | ||
|  |     var e = k; | ||
|  |     var h = e.multiply(new BigInteger("3")); | ||
|  | 
 | ||
|  |     var neg = this.negate(); | ||
|  |     var R = this; | ||
|  | 
 | ||
|  |     var i; | ||
|  |     for(i = h.bitLength() - 2; i > 0; --i) { | ||
|  | 	R = R.twice(); | ||
|  | 
 | ||
|  | 	var hBit = h.testBit(i); | ||
|  | 	var eBit = e.testBit(i); | ||
|  | 
 | ||
|  | 	if (hBit != eBit) { | ||
|  | 	    R = R.add(hBit ? this : neg); | ||
|  | 	} | ||
|  |     } | ||
|  | 
 | ||
|  |     return R; | ||
|  | } | ||
|  | 
 | ||
|  | // Compute this*j + x*k (simultaneous multiplication)
 | ||
|  | function pointFpMultiplyTwo(j,x,k) { | ||
|  |   var i; | ||
|  |   if(j.bitLength() > k.bitLength()) | ||
|  |     i = j.bitLength() - 1; | ||
|  |   else | ||
|  |     i = k.bitLength() - 1; | ||
|  | 
 | ||
|  |   var R = this.curve.getInfinity(); | ||
|  |   var both = this.add(x); | ||
|  |   while(i >= 0) { | ||
|  |     R = R.twice(); | ||
|  |     if(j.testBit(i)) { | ||
|  |       if(k.testBit(i)) { | ||
|  |         R = R.add(both); | ||
|  |       } | ||
|  |       else { | ||
|  |         R = R.add(this); | ||
|  |       } | ||
|  |     } | ||
|  |     else { | ||
|  |       if(k.testBit(i)) { | ||
|  |         R = R.add(x); | ||
|  |       } | ||
|  |     } | ||
|  |     --i; | ||
|  |   } | ||
|  | 
 | ||
|  |   return R; | ||
|  | } | ||
|  | 
 | ||
|  | ECPointFp.prototype.getX = pointFpGetX; | ||
|  | ECPointFp.prototype.getY = pointFpGetY; | ||
|  | ECPointFp.prototype.equals = pointFpEquals; | ||
|  | ECPointFp.prototype.isInfinity = pointFpIsInfinity; | ||
|  | ECPointFp.prototype.negate = pointFpNegate; | ||
|  | ECPointFp.prototype.add = pointFpAdd; | ||
|  | ECPointFp.prototype.twice = pointFpTwice; | ||
|  | ECPointFp.prototype.multiply = pointFpMultiply; | ||
|  | ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo; | ||
|  | 
 | ||
|  | // ----------------
 | ||
|  | // ECCurveFp
 | ||
|  | 
 | ||
|  | // constructor
 | ||
|  | function ECCurveFp(q,a,b) { | ||
|  |     this.q = q; | ||
|  |     this.a = this.fromBigInteger(a); | ||
|  |     this.b = this.fromBigInteger(b); | ||
|  |     this.infinity = new ECPointFp(this, null, null); | ||
|  |     this.reducer = new Barrett(this.q); | ||
|  | } | ||
|  | 
 | ||
|  | function curveFpGetQ() { | ||
|  |     return this.q; | ||
|  | } | ||
|  | 
 | ||
|  | function curveFpGetA() { | ||
|  |     return this.a; | ||
|  | } | ||
|  | 
 | ||
|  | function curveFpGetB() { | ||
|  |     return this.b; | ||
|  | } | ||
|  | 
 | ||
|  | function curveFpEquals(other) { | ||
|  |     if(other == this) return true; | ||
|  |     return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)); | ||
|  | } | ||
|  | 
 | ||
|  | function curveFpGetInfinity() { | ||
|  |     return this.infinity; | ||
|  | } | ||
|  | 
 | ||
|  | function curveFpFromBigInteger(x) { | ||
|  |     return new ECFieldElementFp(this.q, x); | ||
|  | } | ||
|  | 
 | ||
|  | function curveReduce(x) { | ||
|  |     this.reducer.reduce(x); | ||
|  | } | ||
|  | 
 | ||
|  | // for now, work with hex strings because they're easier in JS
 | ||
|  | function curveFpDecodePointHex(s) { | ||
|  |     switch(parseInt(s.substr(0,2), 16)) { // first byte
 | ||
|  |     case 0: | ||
|  | 	return this.infinity; | ||
|  |     case 2: | ||
|  |     case 3: | ||
|  | 	// point compression not supported yet
 | ||
|  | 	return null; | ||
|  |     case 4: | ||
|  |     case 6: | ||
|  |     case 7: | ||
|  | 	var len = (s.length - 2) / 2; | ||
|  | 	var xHex = s.substr(2, len); | ||
|  | 	var yHex = s.substr(len+2, len); | ||
|  | 
 | ||
|  | 	return new ECPointFp(this, | ||
|  | 			     this.fromBigInteger(new BigInteger(xHex, 16)), | ||
|  | 			     this.fromBigInteger(new BigInteger(yHex, 16))); | ||
|  | 
 | ||
|  |     default: // unsupported
 | ||
|  | 	return null; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | function curveFpEncodePointHex(p) { | ||
|  | 	if (p.isInfinity()) return "00"; | ||
|  | 	var xHex = p.getX().toBigInteger().toString(16); | ||
|  | 	var yHex = p.getY().toBigInteger().toString(16); | ||
|  | 	var oLen = this.getQ().toString(16).length; | ||
|  | 	if ((oLen % 2) != 0) oLen++; | ||
|  | 	while (xHex.length < oLen) { | ||
|  | 		xHex = "0" + xHex; | ||
|  | 	} | ||
|  | 	while (yHex.length < oLen) { | ||
|  | 		yHex = "0" + yHex; | ||
|  | 	} | ||
|  | 	return "04" + xHex + yHex; | ||
|  | } | ||
|  | 
 | ||
|  | ECCurveFp.prototype.getQ = curveFpGetQ; | ||
|  | ECCurveFp.prototype.getA = curveFpGetA; | ||
|  | ECCurveFp.prototype.getB = curveFpGetB; | ||
|  | ECCurveFp.prototype.equals = curveFpEquals; | ||
|  | ECCurveFp.prototype.getInfinity = curveFpGetInfinity; | ||
|  | ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger; | ||
|  | ECCurveFp.prototype.reduce = curveReduce; | ||
|  | //ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex;
 | ||
|  | ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex; | ||
|  | 
 | ||
|  | // from: https://github.com/kaielvin/jsbn-ec-point-compression
 | ||
|  | ECCurveFp.prototype.decodePointHex = function(s) | ||
|  | { | ||
|  | 	var yIsEven; | ||
|  |     switch(parseInt(s.substr(0,2), 16)) { // first byte
 | ||
|  |     case 0: | ||
|  | 	return this.infinity; | ||
|  |     case 2: | ||
|  | 	yIsEven = false; | ||
|  |     case 3: | ||
|  | 	if(yIsEven == undefined) yIsEven = true; | ||
|  | 	var len = s.length - 2; | ||
|  | 	var xHex = s.substr(2, len); | ||
|  | 	var x = this.fromBigInteger(new BigInteger(xHex,16)); | ||
|  | 	var alpha = x.multiply(x.square().add(this.getA())).add(this.getB()); | ||
|  | 	var beta = alpha.sqrt(); | ||
|  | 
 | ||
|  |     if (beta == null) throw "Invalid point compression"; | ||
|  | 
 | ||
|  |     var betaValue = beta.toBigInteger(); | ||
|  |     if (betaValue.testBit(0) != yIsEven) | ||
|  |     { | ||
|  |         // Use the other root
 | ||
|  |         beta = this.fromBigInteger(this.getQ().subtract(betaValue)); | ||
|  |     } | ||
|  |     return new ECPointFp(this,x,beta); | ||
|  |     case 4: | ||
|  |     case 6: | ||
|  |     case 7: | ||
|  | 	var len = (s.length - 2) / 2; | ||
|  | 	var xHex = s.substr(2, len); | ||
|  | 	var yHex = s.substr(len+2, len); | ||
|  | 
 | ||
|  | 	return new ECPointFp(this, | ||
|  | 			     this.fromBigInteger(new BigInteger(xHex, 16)), | ||
|  | 			     this.fromBigInteger(new BigInteger(yHex, 16))); | ||
|  | 
 | ||
|  |     default: // unsupported
 | ||
|  | 	return null; | ||
|  |     } | ||
|  | } | ||
|  | ECCurveFp.prototype.encodeCompressedPointHex = function(p) | ||
|  | { | ||
|  | 	if (p.isInfinity()) return "00"; | ||
|  | 	var xHex = p.getX().toBigInteger().toString(16); | ||
|  | 	var oLen = this.getQ().toString(16).length; | ||
|  | 	if ((oLen % 2) != 0) oLen++; | ||
|  | 	while (xHex.length < oLen) | ||
|  | 		xHex = "0" + xHex; | ||
|  | 	var yPrefix; | ||
|  | 	if(p.getY().toBigInteger().isEven()) yPrefix = "02"; | ||
|  | 	else                                 yPrefix = "03"; | ||
|  | 
 | ||
|  | 	return yPrefix + xHex; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ECFieldElementFp.prototype.getR = function() | ||
|  | { | ||
|  | 	if(this.r != undefined) return this.r; | ||
|  | 
 | ||
|  |     this.r = null; | ||
|  |     var bitLength = this.q.bitLength(); | ||
|  |     if (bitLength > 128) | ||
|  |     { | ||
|  |         var firstWord = this.q.shiftRight(bitLength - 64); | ||
|  |         if (firstWord.intValue() == -1) | ||
|  |         { | ||
|  |             this.r = BigInteger.ONE.shiftLeft(bitLength).subtract(this.q); | ||
|  |         } | ||
|  |     } | ||
|  |     return this.r; | ||
|  | } | ||
|  | ECFieldElementFp.prototype.modMult = function(x1,x2) | ||
|  | { | ||
|  |     return this.modReduce(x1.multiply(x2)); | ||
|  | } | ||
|  | ECFieldElementFp.prototype.modReduce = function(x) | ||
|  | { | ||
|  |     if (this.getR() != null) | ||
|  |     { | ||
|  |         var qLen = q.bitLength(); | ||
|  |         while (x.bitLength() > (qLen + 1)) | ||
|  |         { | ||
|  |             var u = x.shiftRight(qLen); | ||
|  |             var v = x.subtract(u.shiftLeft(qLen)); | ||
|  |             if (!this.getR().equals(BigInteger.ONE)) | ||
|  |             { | ||
|  |                 u = u.multiply(this.getR()); | ||
|  |             } | ||
|  |             x = u.add(v);  | ||
|  |         } | ||
|  |         while (x.compareTo(q) >= 0) | ||
|  |         { | ||
|  |             x = x.subtract(q); | ||
|  |         } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         x = x.mod(q); | ||
|  |     } | ||
|  |     return x; | ||
|  | } | ||
|  | ECFieldElementFp.prototype.sqrt = function() | ||
|  | { | ||
|  |     if (!this.q.testBit(0)) throw "unsupported"; | ||
|  | 
 | ||
|  |     // p mod 4 == 3
 | ||
|  |     if (this.q.testBit(1)) | ||
|  |     { | ||
|  |     	var z = new ECFieldElementFp(this.q,this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),this.q)); | ||
|  |     	return z.square().equals(this) ? z : null; | ||
|  |     } | ||
|  | 
 | ||
|  |     // p mod 4 == 1
 | ||
|  |     var qMinusOne = this.q.subtract(BigInteger.ONE); | ||
|  | 
 | ||
|  |     var legendreExponent = qMinusOne.shiftRight(1); | ||
|  |     if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) | ||
|  |     { | ||
|  |         return null; | ||
|  |     } | ||
|  | 
 | ||
|  |     var u = qMinusOne.shiftRight(2); | ||
|  |     var k = u.shiftLeft(1).add(BigInteger.ONE); | ||
|  | 
 | ||
|  |     var Q = this.x; | ||
|  |     var fourQ = modDouble(modDouble(Q)); | ||
|  | 
 | ||
|  |     var U, V; | ||
|  |     do | ||
|  |     { | ||
|  |         var P; | ||
|  |         do | ||
|  |         { | ||
|  |             P = new BigInteger(this.q.bitLength(), new SecureRandom()); | ||
|  |         } | ||
|  |         while (P.compareTo(this.q) >= 0 | ||
|  |             || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne))); | ||
|  | 
 | ||
|  |         var result = this.lucasSequence(P, Q, k); | ||
|  |         U = result[0]; | ||
|  |         V = result[1]; | ||
|  | 
 | ||
|  |         if (this.modMult(V, V).equals(fourQ)) | ||
|  |         { | ||
|  |             // Integer division by 2, mod q
 | ||
|  |             if (V.testBit(0)) | ||
|  |             { | ||
|  |                 V = V.add(q); | ||
|  |             } | ||
|  | 
 | ||
|  |             V = V.shiftRight(1); | ||
|  | 
 | ||
|  |             return new ECFieldElementFp(q,V); | ||
|  |         } | ||
|  |     } | ||
|  |     while (U.equals(BigInteger.ONE) || U.equals(qMinusOne)); | ||
|  | 
 | ||
|  |     return null; | ||
|  | } | ||
|  | ECFieldElementFp.prototype.lucasSequence = function(P,Q,k) | ||
|  | { | ||
|  |     var n = k.bitLength(); | ||
|  |     var s = k.getLowestSetBit(); | ||
|  | 
 | ||
|  |     var Uh = BigInteger.ONE; | ||
|  |     var Vl = BigInteger.TWO; | ||
|  |     var Vh = P; | ||
|  |     var Ql = BigInteger.ONE; | ||
|  |     var Qh = BigInteger.ONE; | ||
|  | 
 | ||
|  |     for (var j = n - 1; j >= s + 1; --j) | ||
|  |     { | ||
|  |         Ql = this.modMult(Ql, Qh); | ||
|  | 
 | ||
|  |         if (k.testBit(j)) | ||
|  |         { | ||
|  |             Qh = this.modMult(Ql, Q); | ||
|  |             Uh = this.modMult(Uh, Vh); | ||
|  |             Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql))); | ||
|  |             Vh = this.modReduce(Vh.multiply(Vh).subtract(Qh.shiftLeft(1))); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             Qh = Ql; | ||
|  |             Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql)); | ||
|  |             Vh = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql))); | ||
|  |             Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1))); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     Ql = this.modMult(Ql, Qh); | ||
|  |     Qh = this.modMult(Ql, Q); | ||
|  |     Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql)); | ||
|  |     Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql))); | ||
|  |     Ql = this.modMult(Ql, Qh); | ||
|  | 
 | ||
|  |     for (var j = 1; j <= s; ++j) | ||
|  |     { | ||
|  |         Uh = this.modMult(Uh, Vl); | ||
|  |         Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1))); | ||
|  |         Ql = this.modMult(Ql, Ql); | ||
|  |     } | ||
|  | 
 | ||
|  |     return [ Uh, Vl ]; | ||
|  | } | ||
|  | 
 | ||
|  | var exports = { | ||
|  |   ECCurveFp: ECCurveFp, | ||
|  |   ECPointFp: ECPointFp, | ||
|  |   ECFieldElementFp: ECFieldElementFp | ||
|  | } | ||
|  | 
 | ||
|  | module.exports = exports |